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Abstract

In this paper, the revised characteristics-based (CB) method for incompressible flows recently derived by Neofytou
[P. Neofytou, Revision of the characteristic-based scheme for incompressible flows, J. Comput. Phys. 222 (2007) 475–
484] has been further investigated. We have derived all the formulas for pressure and velocities from this revised CB
method, which is based on the artificial compressibility method (ACM) [A.J. Chorin, A numerical solution for solving
incompressible viscous flow problems, J. Comput. Phys. 2 (1967) 12]. Then we analyze the formulations of the original
CB method [D. Drikakis, P.A. Govatsos, D.E. Papatonis, A characteristic based method for incompressible flows, Int.
J. Numer. Meth. Fluids 19 (1994) 667–685; E. Shapiro, D. Drikakis, Non-conservative and conservative formulations
of characteristics numerical reconstructions for incompressible flows, Int. J. Numer. Meth. Eng. 66 (2006) 1466–1482;
D. Drikakis, P.K. Smolarkiewicz, On spurious vortical structures, J. Comput. Phys. 172 (2001) 309–325; F. Mallinger,
D. Drikakis, Instability in three-dimensional, unsteady stenotic flows, Int. J. Heat Fluid Flow 23 (2002) 657–663; E. Shap-
iro, D. Drikakis, Artificial compressibility, characteristics-based schemes for variable density, incompressible, multi-species
flows. Parts I. Derivation of different formulations and constant density limit, J. Comput. Phys. 210 (2005) 584–607; Y.
Zhao, B. Zhang, A high-order characteristics upwind FV method for incompressible flow and heat transfer simulation
on unstructured grids, Comput. Meth. Appl. Mech. Eng. 190 (5–7) (2000) 733–756] to investigate their consistency with
the governing flow equations after convergence has been achieved. Furthermore we have implemented both formulations
in an unstructured-grid finite volume solver [Y. Zhao, B. Zhang, A high-order characteristics upwind FV method for
incompressible flow and heat transfer simulation on unstructured grids, Comput. Meth. Appl. Mech. Eng. 190 (5–7)
(2000) 733–756]. Detailed numerical experiments show that both methods give almost identical solutions and convergence
rates. Both can generate solutions which agree well with published results and experimental measurements. We thus con-
clude that both methods, being upwind schemes designed for the ACM, have the same performances in terms of accuracy
and convergence speed, even though the revised method is more complex with less stringent assumptions made, while the
original CB method is simpler due to the use of extra simplifying assumptions.
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1. Introduction

The original CB method for the ACM has been proposed by Drikakis et al. [3] as an upwind scheme on
boundary-fitted structured grids to compute incompressible flows. Afterwards, the method has been developed
and applied by Shipiro and Drikakis [4] on non-conservative and conservative formulations of characteristics
numerical reconstructions for incompressible flows; Drikakis and Smolarkiewicz [5] on spurious vertical struc-
ture; Mallinger and Drikakis [6] on the instability in 3D unsteady stenotic flows; and Shipiro and Drikakis [7]
for variable density, incompressible, multi-species flows. At the same time, Zhao et al. [8] have developed a
general higher-order finite-volume unstructured grid method for incompressible flows based on the CB
method and ACM. The above references show the CB scheme has been successfully used in a number of
applications.

Recently Neofytou [1] proposed revisions in the derivation of the compatibility equations which are used to
derive the CB formulas for the calculations of the primitive flow valuables. It is found that over simplifying
assumptions have been made in the original CB scheme for the derivation of the compatibility equations for
k = k0 in 2D and 3D [1].

In this paper, the revised compatibility equations have been further investigated. It is released that both the
original and new CB methods are derived based on the ACM with the introduction of pseudo-time dependent
terms. Their primary purposes are to introduce stable upwinding to help the solution of the ACM converge to
physically meaningful one. Through detailed analysis of the original CB method, we also find that after con-
verged solution is achieved, its formulations are consistent with the conservation laws. Furthermore we have
derived the formulations for calculating the primitive flow variables based on the revised CB method, which
have not been given in [1]. The original and revised methods are then implemented into an unstructured-grid
solver developed by Zhao et al. [8]. Numerical experiments have been conducted to compare the accuracy and
convergence speed of the two methods. It is found that they are basically identical in their performances
although they are based on different assumptions and have different levels of complexities.
2. The original CB method

The Euler equation modified by Chorin’s ACM [2] are rewritten in partial differential form in a Cartesian
co-ordinate system for the derivation of the CB method:
op
os
þ b

oui

oxi
¼ 0 ð1Þ

oui

os
þ uj

oui

oxj
þ ui

ouj

oxj
þ op

oxi
¼ 0 ð2Þ
where subscripts i and j equal 1, 2 and 3, representing the co-ordinates x, y and z. If we introduce finite-volume
unstructured grid method [8] for the numerical solution of the equations, we can construct control volumes
that surround every mesh node and store flow valuables at these nodes using the vertex-centered scheme. Sup-
pose that n is a new co-ordinate which is in the direction of the outward normal vector of the surface of a
control volume that surrounds a particular vertex. For arbitrary unstructured meshes, the preceding equations
can then be transformed into
op
os
þ b

ouj

on
nxj
¼ 0 ð3Þ

oui

os
þ uj

oui

on
nxj
þ ui

ouj

on
nxj
þ op

on
nxi
¼ 0 ð4Þ
where nxi
¼ on

oxi
and nxj

¼ on
oxj

.
In the s–n space as shown in Fig. 1, flow variable vector W, where W = {p,u,v}T, at pseudo time level m + 1

can be calculated along a characteristics, k, using a Taylor series expansion and the initial value at pseudo time
level m (Wk):
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Fig. 1. s–n Co-ordinate.
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W ¼Wk þWnnsDsþWsDs ð5Þ

and
Ws ¼
W�Wk

Ds
�Wnns ð6Þ
A wave speed, kk, is introduced as
ns ¼ kk

ffiffiffiffiffiffiffiffiffiffi
nxi

nxi

p

and the unit normal vector components are
nxj ¼
nxjffiffiffiffiffiffiffiffiffiffi
nxi

nxi

p

Substituting components of Ws into Eqs. (3) and (4), we have
1ffiffiffiffiffiffiffiffiffiffi
nxi

nxi

p ðp � pkÞ
Ds

� pnkk þ bðunnx þ vnnyÞ ¼ 0 ð7Þ

1ffiffiffiffiffiffiffiffiffiffi
nxi

nxi

p ðu� ukÞ
Ds

� unðk0 � kkÞ þ uðunnx þ vnnyÞ þ pnnx ¼ 0 ð8Þ

1ffiffiffiffiffiffiffiffiffiffiffi
nxj

nxj

p ðv� vkÞ
Ds

� vnðk0 � kkÞ þ vðunnx þ vnnyÞ þ pnny ¼ 0 ð9Þ
where k0 is the fluid velocity in normal direction:
k0 ¼ unx þ vny
In order to derive the compatibility equations, spatial derivatives, such as un, vn, and pn have to be elimi-
nated from the preceding equations. Following the approaches in [3,9] for both compressible and incompress-
ible flow equations, each of the preceding three equations is multiplied by an arbitrary variable and all the
resulting equations are summed to form a new equation as follows:
1

Ds
ffiffiffiffiffiffiffiffiffiffiffi
nxj

nxj

p A� pnBþ unC þ vnD ¼ 0 ð10Þ
where
A ¼ aðp � pkÞ þ bðu� ukÞ þ cðv� vkÞ
B ¼ �akk þ bnx þ cny

C ¼ anxbþ bðk0 � kk þ unxÞ þ cvnx

D ¼ anybþ buny þ cðk0 � kk þ vnyÞ

ð11Þ
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a, b, and c are the arbitrary variables used to multiply the equations. We set the coefficients of the partial spa-
tial derivatives to be zero, i.e., A, B, C, and D are zero:
A ¼ aðp � pkÞ þ bðu� ukÞ þ cðv� vkÞ ¼ 0 ð12Þ
B ¼ �akk þ bnx þ cny ¼ 0 ð13Þ
C ¼ anxbþ bðk0 � kk þ unxÞ þ cvnx ¼ 0 ð14Þ
D ¼ anybþ buny þ cðk0 � kk þ vnyÞ ¼ 0 ð15Þ
Eqs. (13)–(15) constitute a linear system UX = 0 with X = {a,b,c}. Variables a, b, and c are generally non-
zero. Thus the system of equations has non-trivial solution. This means that det (U) = 0, and then the follow-
ing kk values can be derived:
k0 ¼ unx þ vny

k1 ¼ k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 þ b

q
¼ k0 þ C

k2 ¼ k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 þ b

q
¼ k0 � C
For each kk, characteristic equations can be derived from Eqs. (12)–(15). For example, for kk = k0, we have
a ¼ bnx þ cny

k0

ð16Þ
Substituting this into Eq. (12), we obtain
bnx þ cny

k0

ðp � p0Þ þ bðu� u0Þ þ cðv� v0Þ ¼ 0
that is
b½nxðp � p0Þ þ k0ðu� u0Þ� þ c½nyðp � p0Þ þ k0ðv� v0Þ� ¼ 0 ð17Þ

For any b and c, the preceding equations are always satisfied. All the terms in square brackets are set to

zero. As a result, we have,
ðu� u0Þny � ðv� v0Þnx ¼ 0 ð18Þ

The above equation is equivalent to the following condition:
U t ¼ ðU tÞ0

i.e. the tangent velocity is assumed to be constant near the control volume surface, which is a reasonable
assumption for the extension of a 1D method to multi-dimensional ones with arbitrary unstructured meshes.
For k = k1,
p � p1 ¼ �k1½ðu� u1Þnx þ ðv� v1Þny � ð19Þ

For k = k2,
p � p2 ¼ �k2½ðu� u2Þnx þ ðv� v2Þny � ð20Þ

Finally, u, v and p are determined using the preceding characteristics equations (18)–(20):
u ¼ fnx þ nyðu0ny � v0nxÞ ð21Þ
v ¼ fny þ nxðv0nx � u0nyÞ ð22Þ

p ¼ k1½p2 þ k2ðu2nx þ v2nyÞ� � k2½p1 þ k1ðu1nx þ v1nyÞ�
2C

ð23Þ
where
C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 þ b

q
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f ¼ 1

2C
½ðp1 � p2Þ þ nxðk1u1 � k2u2Þ þ nyðk1v1 � k2v2Þ�
Flow quantities at m + 1 pseudo time level obtained from the preceding equations on the characteristics are
then used to calculate convection fluxes at the control volume interface. Those on different characteristics at m

pseudo time level are approximately evaluated by an upwind scheme using the signs of the characteristics as
suggested by Drikakis et al. [3].
Wj ¼
1

2
½ð1þ signðkjÞÞWL þ ð1� signðkjÞÞWR�
where WL and WR are obtained by the upwind-biased interpolation.
The advantages of the characteristics scheme are: (i) stable solution without adding artificial viscosity; (ii)

less sensitive to grid orientation because flow signals are propagated along characteristics.

3. Theoretical analysis of the original CB method

It should be noted that the ACM method does not produce physically meaningful results before the con-
vergence of the solution, i.e., the disappearance of the pseudo-time dependent terms. After the convergence,
Eq. [3] becomes
oUn

on
¼ 0 ð24Þ
And Eq. (4) can be reformulated as
oU 2
n

on
þ op

on
¼ 0 ð25Þ
Integrating the above two equations along n for all the characteristics (now s has disappeared), we have
Un ¼ ðUnÞk ð26Þ
U 2

n þ p ¼ ðU 2
n þ pÞk ð27Þ
Based on Eqs. (26) and (27), we also have
P ¼ P k ð28Þ

Therefore it is noted that when convergence is achieved, all the state vectors containing the primitive flow
valuables that are linked to the state on the interface through all the characteristics converge to the same state,
which is the state on the interface itself:
W ¼Wk ð29Þ

We now analyze the relation between the original CB and the convergent equations in Eqs. (26)–(29). From
Eqs. (21) and (22), we can derive
Un ¼
p1 � p2 þ U n½ðU nÞ1 � ðU nÞ2� þ ½ðUnÞ1 þ ðUnÞ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUnÞ2 þ b

q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU nÞ2 þ b

q ð30Þ
And from Eq. (23) the following is obtained:
p ¼
U nðp2 � p1Þ � b½ðU nÞ2 � ðU nÞ1� þ ðp2 þ p1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUnÞ2 þ b

q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUnÞ2 þ b

q ð31Þ
It is obvious that after convergence is achieved, Eqs. (30) and (31) become the same as Eqs. (26)–(29). This
means that the original CB method leads to convergent solutions that are consistent with the conservation
laws.
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4. The revised CB method

Neofytou [1] proposes a revision to the first compatibility equation, Eq. (18), based on the argument that in
Eq. (17) b and c are related. He thought that setting the terms in the square brackets in Eq. (17) to zero is too
stringent a condition. If Eq. (16) is substituted into Eq. (14) then
b ¼ �c
bny þ k0v
bnx þ k0u

ð32Þ
Substituting Eq. (32) into Eq. (16) yields
a ¼ cb
uny � vnx

bnx þ k0u
ð33Þ
By substituting Eqs. (32) and (33) into Eq. (13) we have
ðp � p0Þðuny � vnxÞ � ðu� u0Þðbny þ k0vÞ þ ðv� v0Þðbnx þ k0uÞ ¼ 0 ð34Þ
Thus Neofytou [1] considers Eq. (34), not Eq. (18), as the compatibility equation for k = k0. For k = k1 and
k = k2, the compatibility equations are the same as Eqs. (19) and (20), respectively, and are obtained following
a procedure similar to the derivation of Eqs. (34). Details are given below. Here Eq. (13) · ny � Eq. (14) · nx

leads to
bnyðk0 � kkÞ þ cnxðkk � k0Þ ¼ 0
i.e.
b ¼ cnx

ny
ð35Þ
By substituting Eq. (35) into Eq. (13) we have
a ¼ c
nykk

ð36Þ
If we substitute Eqs. (35) and (36) into Eq. (12), then the following is obtained:
c
nykk
ðp � pkÞ þ

cnx

ny
ðu� ukÞ þ cðv� vkÞ ¼ 0
Thus Eqs. (19) and (20) are thus derived as follows:
ðp � pkÞ þ kk½nxðu� ukÞ þ nyðv� vkÞ� ¼ 0
here k = 1 and 2.
Therefore Eqs. (34), (19) and (20) consist of the revised compatibility equations, which can be used to derive

expressions for primitive values p, u and v as functions of their characteristic values.
5. Primitive flow variables based on the revised CB method

Here we use a mathematics tool, Maple, to help derive the expressions for the primitive valuables, such as p,
u and v from the revised compatibility equations. After lengthy manual simplifications, the final equations are
obtained as follows:
p ¼ k1k2½ðu2nx þ v2nyÞ � ðu1nx þ v1nyÞ� � k2p1 þ k1p2

k1 � k2

ð37Þ

u ¼ ua

ub
ð38Þ
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treamlines plots for �ow over a
ua ¼½k1ðnxu1 þ nyv1Þ � k2ðnxu2 þ nyv2Þ�fnxðk2p1 � k1p2Þ þ ðk1 � k2Þ½k0u0 þ nxðp0 þ bÞ�
þ nxk1k2½ðnxu1 þ nyv1Þ � ðnxu2 þ nyv2Þ�g þ nxk1k2ðp1 � p2Þ½ðnxu1 þ nyv1Þ � ðnxu2 þ nyv2Þ�
þ ðk2 � k1Þfnybðk2 � k1Þðnyu0 � nxv0Þ þ ðp2 � p1Þ½k0u0 þ nxðp0 þ bÞ�g þ nxðp2 � p1Þðk1p2 � k2p1Þ
and
ub ¼ ðk1 � k2Þ k2p1 � k1p2 þ k1k2½ðnxu1 þ nyv1Þ � ðnxu2 þ nyv2Þ� þ ðk1 � k2Þ½p0 þ bþ k0ðnxu0 þ nyv0Þ�
� �

v ¼ va

vb

ð39Þ

where
Fig. 2. Fluid mesh for stationary circular cylinder flow at Re = 40.

a

b

stationary circular cylinder by: (a) original CB method; (b) revised CB method.
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va ¼ðnxu1 þ nyv1Þ k1k1k2ny ½ðnxu1 þ nyv1Þ � ðnxu2 þ nyv2Þ� þ k0k1ðk2 � k1Þv0 þ k1k1nyðp0 � b� p2Þ
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g. 4. Time histories of primitive variables on a control volume interface: (a) the original CB method; (b) revised CB method.
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6. Numerical investigation of the two methods

In this section, numerical experiments are conducted to investigate the performances of the original CB and
revised CB methods. In order to generate comparable results, these two methods are implemented into the
same solver [8] and the same mesh is used to simulate the same problem to generate results for comparison.
The test case is laminar flow over a circular cylinder at Reynolds number equal to 40. The fluid mesh consists
of 67,702 nodes and 134,625 elements (see Fig. 2). In both cases the number of pseudo sub-iterations per time
step is set to 200 and CFL is set to 3.5. The streamlines around the cylinder obtained using the original CB
method are compared with those of the revised CB method in Fig. 3, which are almost identical. Table 1 gives
a comparison of the aspect ratios calculated by both methods (separation bubble length, S over cylinder diam-
eter, D) with the experimental results obtained by Nishioka and Sato [10]. Both results agree well each other
and the experimental ones.

In order to further investigate the differences in results generated by the two methods, the values of prim-
itive variables on a particular control volume interface are recorded in Fig. 4. Moreover, their residuals his-
tories versus CPU time are plotted in Fig. 5 and the lift and drag coefficients versus non-dimensional time are
plotted in Fig. 6. Fig. 5 indicated that the convergent rate of original method is bit of faster than that of
revised method. Authors thought the mainly reason is the expressions of primitive variables, p, u and v for
the original method Eqs. (21)–(23), are much simpler than those for the revised one Eqs. (37)–(39). Table 2
gives a comparison of drag coefficient calculated by both methods with other published results, which again
Table 2
The comparison of drag coefficient (Re = 40)

Methods CD

Takami and Keller [11] 1.5359
Dennis and Chang [12] 1.522
Nieuwstadt and Keller [13] 1.550
Original CB method 1.5303

Revised CB method 1.5301
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Fig. 5. Residuals versus CPU time (in min) for original CB method (solid line) and revised CB method (dot line).
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shows excellent agreement. The computational results in Figs. 4–6 show almost identical predictions and con-
vergence rates for the two methods, with the original one being slightly faster in convergence speed. The solv-
ers are run on a personal computer using Intel Xeon dual CPU with a clock speed of 2.8 GHz.
7. Conclusions

In this paper, the revised compatibility equations derived by Neofytou [1] have been investigated. Further-
more a theoretical study of the original CB method has also been undertaken to analyze its compatibility with
the converged equations of the ACM, which are the conservation laws. The mathematical expressions for
primitive flow variables based on the revised CB method are derived and incorporated into an unstruc-
tured-grid flow solver [4], together with the original CB formulations. Numerical experiments are then con-
ducted to compare the performances of the two methods, as well as to validate their results. We can thus
conclude that: (1) the two methods, being based on the ACM, do not have physical meaning, but they are only
used as upwind schemes to facilitate the convergence of the modified equations of the ACM to the conserva-
tion equations, from which the final converged numerical solutions are obtained; (2) both methods can gen-
erate the same converged solutions accurately, which agree well with experimental measurements; (3) both
have the same convergence speeds using the same mesh for the same test case; (4) the revised CB method is
more complex with less stringent assumptions made, while the original CB method is simpler due to the
use of more simplifying assumptions, which are, nonetheless, found to be consistent with the converged equa-
tions, i.e., the conservation laws.
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